
CamiTK Programming
Guidelines
Version 1.0 - 21 June 2018

Team playing is fun only if played by the rules...

Releases
Version Date Author Comment

0.1 2016-02-16 C.Fouard Creation
0.2 2016-07-25 E. Promayon Review
0.3 2017-02-04 C. Fouard XML and Latex Conversion
1.0 2018-06-21 E. Promayon Review and �nal touch

Copyright © 2018 Université Grenoble Alpes

http://camitk.imag.fr

Licensed under the CC BY-NC 3.0
Creative Commons Attribution - Noncommercial 3.0 Unported License, the “License”.
You may not use this �le except in compliance with the License. You may obtain a copy of
the License at http://creativecommons.org/licenses/by-nc/3.0. Unless required by applicable
law or agreed to in writing, software distributed under the License is distributed on an “AS IS”
BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the speci�c language governing permissions and limitations under the
License.

First printing, June 2018

http://creativecommons.org/licenses/by-nc/3.0

Preface

CamiTK started as a two-persons project, and evolved to a more international audience. The
purpose of this document is to capture what was the initial team coding guidelines in order to
ensure a wider and more open participation of other developers.

This document �rst gives a brief introduction to CamiTK. You should refer to other documen-
tions or training session to understand CamiTK more thoroughly.

The CamiTK process has always evolved since the �rst commit depending on the number of
people in the CamiTK core developer team, their various (mad or practical) ideas, the number
and requirement of the old and new users, the interaction with other developers and related
software framework and the gradual clari�cation of the CamiTK goals.

As this is so well written in the VTK software process document: "By setting down the [coding
guideline] in writing we seek not to hamper that evolution but rather to provide a de�ned basis
for proposing further changes in order to continue its improvement. We seek a process that
does not place needless or di�cult restrictions on developers, encourages contributions from
new developers, and does not require signi�cant e�ort to centrally manage."

This Programming Guidelines are written for all the CamiTK Developers. This means, that,
whatever CamiTK Extension you would like to develop, you should read and keep in mind this
book.

Enjoy!

Céline Fouard, Jean-Loup Haberbush and Emmanuel Promayon

Contents

Preface . 3

1 Introduction . 7

1.1 Prototyping CAMI Applications 7

1.1.1 The goal of CamiTK . 7

1.1.2 Prototyping vs Clinical routine (TRL) . 8

1.2 Prerequisite 8

1.2.1 CamiTK General Organization . 8

1.2.2 Intended Audience . 10

1.2.3 A Free, Open Source, International and Multi-Platform Framework 10

1.2.4 OOP and C++ . 10

1.3 Organization of this document 11

2 Generic C++ Conventions . 13

2.1 Introduction 13

2.2 Code Genericity and Reutilisability 15

2.3 Code Presentation and Aesthetics 17

2.4 Naming Conventions 26

2.5 Header Files Conventions 33

2.6 Include Conventions 39

2.7 Cpp files conventions 52

2.8 SDK core files 57

3 CamiTK Specific Conventions . 59

3.1 Genric Principles 59

3.2 Licensing 63

3.3 CEP organization 65

3.4 Components 67

3.5 Actions 72

Prototyping CAMI Applications
The goal of CamiTK
Prototyping vs Clinical routine (TRL)

Prerequisite
CamiTK General Organization
Intended Audience
A Free, Open Source, International and Multi-
Platform Framework
OOP and C++

Organization of this document

1 — Introduction

“ Computers are good at following instructions, but not at reading your mind.

Donald Knuth ”
1.1 Prototyping CAMI Applications

CamiTK is a prototyping framework for rapidly building Computer Assisted Medical Intervention
(CAMI hereafter) applications. It provides a SDK and applications in order to support the
maturation cycle of your CAMI Applications or Medical Devices.

1.1.1 The goal of CamiTK

Computer Assited Medical Intervention (CAMI) is a complex multi-disciplinary �eld. CAMI
research requires the collaboration of experts in several �elds as diverse as medicine, computer
science, mathematics, instrumentation, signal processing, mechanics, modeling, automatics,
optics, etc. CamiTK is a modular framework that helps researchers and clinicians to collaborate
together in order to prototype CAMI applications by gathering the knowledge and expertise
from each discipline. It is an open-source, cross-platform, generic and modular tool written
in C++ which can handle medical images, biomedical simulations, robot control and surgical
navigation.

The goal of the CamiTK project is not only to gather the knowledge of the specialists from
each area of CAMI, but also to gather their know-how by facilitating data exchange, software
prototyping of applications and the production of reproducible results. The underlying objective
is to bring clinicians, scientists and industry faster and more e�ciently toward clinical validation
and bene�ts to the patient. CamiTK’s general design is inspired by the Component-Based
Software Engineering (CBSE) concept and therefore encourages reusing rather than reinventing
the wheel. Rapid prototyping of CAMI applications is made easy by assembling pre-built

8 Introduction

CamiTK components (called CamiTK extensions) instead of continuously patching onto existing
code.

1.1.2 Prototyping vs Clinical routine (TRL)

Using CamiTK core C++ SDK, the camitk-wizard that generate new CamiTK Extensions
and the CamiTK workbench application (called camitk-imp), you can quickly design new
algorithms or new process in order to shape CAMI algorithm or product. Once your proof of
concept is de�ned, CamiTK provides another application (called camitk-actionstatemachine)
to test your prototype over a larger number of realistic cases.

Medical
Service

Perspective

Medical
Service

Estimation

Medical
Service

Maturation

Medical
Service

Demonstration

camitk-imp

TRL1

TRL2

TRL3

TRL4

TRL5

TRL6

TRL7

camitk-wizard

Research

Clinicians

Industry
patient

patient

Proof of
Concept

camitk-asm
Prototype

Clinical
Product

Figure 1.1: Innovation Spiral, Technology Readiness Levels and CamiTK-Applications.

Figure 1.1 (greatly inspired and reproduced by courtesy of MAXITHEC Center of Clinical
Investigation - Innovative Technology) shows the maturation cycle of a new medical device
and the associative innovation spiral in regards with three applications provided by CamiTK.
CamiTK is dedicated to help you during the two �rst phases of the development of a new CAMI
application or medical device: the development of the proof of concept and the prototype. It
can not only help you to de�ne the product perspectives but it can also support you during the
estimation of the medical service of your prototype.

1.2 Prerequisite

1.2.1 CamiTK General Organization

CamiTK can be seen three di�erent ways (hence the logo):

1.2 Prerequisite 9

Figure 1.2: CamiTK logo seen as a 3 usability layers

• Open Project: CamiTK is an Open Source Project. The essential source code (CamiTK
SDK) is not only available under the LGPL-v3 licence, but there are also a lot of collab-
orative tools, the software forge being the �rst of them, where anyone can help (you
don’t need to be a programmer for that, there are a lots of areas where improvements
are needed, not only in the source code!).

• CamiTK for Users: CamiTK directly provides CAMI applications that can be useful to
do something immediately. The installation is easy (there are packages for Linux and
Windows for example).

• CamiTK for Developers: CamiTK is a framework, and developers can create their own
pieces of puzzle thanks to the Open Source Software Development Kit (SDK).

CamiTK extensively uses the Component-Based Software Engineering (CBSE) principle.It
organizes the development of new features in three di�erent levels (hence the logo):

Figure 1.3: CamiTK logo seen as a 3 development layers

• CamiTK Core: this is where all the concepts are de�ned and implemented. The CamiTK
experts are the only one who have to understand and master it well (the in-depth
explanation of CamiTK Core architecture is beyond the scope of this document).

• CamiTK Service Layer: this is where the glue between the source code developed in/for a
speci�c �eld and CamiTK is de�ned. All developers need a basic knowledge of the service
layer. Note that the camitk-wizard application facilitates the work of the developer
and that CamiTK-SDK itself is developed with simplicity in mind. You will acquire this
knowledge little by little. Most of the usage are covered by default behaviors already
implemented in CamiTK-SDK helper classes.

• CamiTK Extensions: this is where the domain-speci�c code is written. This is where
most of the work has to be done in order to provide a new feature in CamiTK for a
speci�c �eld. This is where you should focus your attention as a developer. And this is
where your own expertise is mostly needed.

10 Introduction

1.2.2 Intended Audience

This Programming Guidelines are written for all the types of CamiTK Developers. This means
that you should read and keep in mind this book if your are developing a new CamiTK Extension.
CamiTK applications users, like camitk-imp and camitk-actionstatemachine users do not
need to write a line of code, so do not need to read this book. However, camitk-wizard users,
as they will have to modify code provided by the wizard to create new extensions will need to
follow these guidelines.

Note

If you intend to develop within CamiTK-SDK Core, not only will you need to follow
these guidelines, but you will also have to follow other, more restrictive guidelines and
understand CamiTK SDK Core architecture in-depth. A dedicated documentation is in
preparation.

Note

These guidelines are not extensive (nor probably be ever entirely and satisfactorily
completed!). Indeed, there is no mention of code versioning for example, which mainly
depends on your institution/company/laboratory. Please refer to your institution guide-
lines for this subject. We advocate using gitlab or at least a bare git repository.

1.2.3 A Free, Open Source, International and Multi-Platform Framework

CamiTK aims at being able to reuse and share code between programmers (whether they are
from your team or not). To ensure this modularity and know-how technological transfer, some
elementary principle should be followed.

These guidelines are written with the big picture in mind. To this end, CamiTK-SDK and
CamiTK-Extensions must be developed for an international audience and be compatible with
Linux, Windows and MacOS. CamiTK contributors come from several country, and use several
technologies, work environment and several mindsets. To be as generic as possible, CamiTK
must therefore be written in English (Code, Comments and Documentation) and must be
compatible/compilable on the most common Operating Systems (Linux, Windows, MacOS).

The Free and Open Source character of the CamiTK-SDK framework (labelled by the LGPL v3
licence) ensures you that any CamiTK-Extension you develop will be your property (whether
or not you decide to distribute it under LGPL v3 licence or any other FOSS licence) and that
you will always be able to compile and execute it in the future. Indeed, this speci�c licence
ensures your independence regarding the code you link to CamiTK.

1.2.4 OOP and C++

The choice has been made to write the CamiTK Framework using the C++ language. It strictly
follows the Object Oriented Programming (OOP hereafter) paradigm. In this case, C++ is used as
a pure OOP language (more like the Java language does) and static and non OOP characteristics
of the C++ language are most of the time avoided.

We recommend you to �nd an open class or a book if you wish to learn OOP and C++. Their

1.3 Organization of this document 11

basic principles will not be described in this book. Thinking in C++ from Bruce Eckel is a good
book to start with (and freely available).

1.3 Organization of this document

Although basic principles of OOP and C++ are beyond the scope of this book (see previous
paragraph), the �rst part is dedicated to general C++ conventions adopted for CamiTK pro-
gramming. Indeed, for the code to be easily reusable and maintainable by a large community
of programmers, conventions must be followed to ensure that reading anyone’s code will lead
to the correct interpretation of the initial programmers intentions. As the Qt documentation
has expressed it very well: "Keep in mind that code is read much more often than written."

A second part explains what is expected as a correct usage of the CamiTK-SDK service layer.

In this document, each guideline is numbered with CPG (for CamiTK Programming Guideline)
and a 3 digits number, so you can refer to it in your forum messages or bug reports.

All along this guide, a must requirement must be followed, a should is a recommendation and
a can is a general guideline.

Introduction
Code Genericity and Reutilisability
Code Presentation and Aesthetics
Naming Conventions
Header Files Conventions
Include Conventions
Cpp files conventions
SDK core files

2 — Generic C++ Conventions

“ Any fool can write code that a computer can understand. Good programmers write
code that humans can understand.

Martin Fowler ”
2.1 Introduction

C++ is a very permissive language. It is thus very powerful and allows you to code in any
way you like to. However, as one of the main goals of CamiTK is to share know-how between
researchers and developers, the basic rules are to make generic and reusable code. This idea
should always guide you as you write your code. this chapter gives you some (non exhaustive)
mandatory guidelines to make your code more generic and easier to use by any other CamiTK
developer.

As you probably know by now, CamiTK is mainly based on Qt and VTK. After reading the
current document, we advise you to read the two following coding conventions, on which
some parts of this document is based:

• the Qt coding convention: it contains useful information that will improve your under-
standing.

• the VTK Software Process: it also contains extra bits about how the VTK software
life-cycle is managed, including information about continuous integration.

• the KDE coding style: KDE is a big project with a lot of contributors, and like CamiTK it
is based on Qt and uses CMake. The KDE community process is a great example of how
collaboration are organized between a lot of developers.

• The Google C++ Style Guide: it contains a ton of well documented information with
detailed rationale. It is worth reading it for improving your general knowledge about
C++.

If you want to go further and learn more best practices, C++ coding guidelines, rules to develop

https://wiki.qt.io/Coding_Conventions
https://docs.google.com/a/kitware.com/document/d/1nzinw-dR5JQRNi_gb8qwLL5PnkGMK2FETlQGLr10tZw
https://community.kde.org/Policies/Kdelibs_Coding_Style
https://google.github.io/styleguide/cppguide.html

14 Generic C++ Conventions

more secure programs, or just pieces of wisdom from experience C++ authorities, here is a list
of helpful references:

• Overview of the New C++ (C++11/14). Scott Meyers. 2015.
• E�ective C++ book series (E�ective C++, E�ective Modern C++, More E�ective C++,

and E�ective STL). Scott Meyers.
• C++ Coding Standards by Herb Sutter and Andrei Alexandrescu.
• Joint Strike Fighter Air Vehicle C++ Coding Standards, December 2005, Lockheed Martin

Corporation
• MISRA C++:2008 Guidelines for the use of the C++ language in critical systems, June

2008, MIRA Limited
• SEI CERT C++ Coding Standard, 2016. The current updated online version is also available

here.
• High Integrity C++ Coding Standard Version 4.0. 2013

Note
This chapter will not be easily read by non C++ developers as the CPGG described here
are all about C++. So if you do not understand the following CPGG, you may want to
�nd a book or Open Classroom on C++ coding.

https://www.artima.com/shop/overview_of_the_new_cpp
http://www.aristeia.com/
http://www.aristeia.com/
http://www.gotw.ca/publications/c++cs.htm
http://www.stroustrup.com/JSF-AV-rules.pdf
http://www.cert.org/downloads/secure-coding/assets/sei-cert-cpp-coding-standard-2016-v01.pdf
https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=88046682
https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=88046682
http://www.codingstandard.com/section/index/

2.2 Code Genericity and Reutilisability 15

2.2 Code Genericity and Reutilisability

CPG-001: Default language is English

Summary
All code, comments and documentation must be in English

Best Practice

1 // Whether they are on one line
2 /* Or on several lines...
3 All comments should explain the programmer’s intentions in English
4 */

Rationale

As CamiTK is an Open Source International project, all code comments and documentation
must be in English. Translation can be provided in speci�c �les, but the default language is
English. Simple English is easier to understand and correct if needed (commenting code
is not a work of literature): use simple sentence constructions, be direct, stay simple and
factual.

16 Generic C++ Conventions

CPG-002: No absolute �le name

Summary

Absolute �le names (like e.g. /some/path/to/filename.vtk) must be avoided.

Rationale

The goal of CamiTK is to share know-how between several users through several computer
and operating systems. An absolute �le name prevents this kind of use as the absolute �le
path will not work on another computer and/or another account. You can use Qt Resource
System a to embed speci�c required �les within the code.

a (http://doc.qt.io/qt-5/resources.html)

http://doc.qt.io/qt-5/resources.html

2.3 Code Presentation and Aesthetics 17

2.3 Code Presentation and Aesthetics

Even though code presentation may not in�uence how code compile and execute, it is very
important that anyone reading your code understands it without too much e�ort. Other
guidelines are also important for this matter, but code presentation is the easiest and most
straightforward way to ensure it. All the following code presentation conventions can be
arranged and checked thanks to the utility Artistic Style automatic code formatter.

The easiest way to apply the coding conventions described in this section is to run Artistic Style
(astyle) on your code using the following option:

1 astyle --style=java \
2 --break-closing-brackets \
3 --add-brackets \
4 --unpad-paren \
5 --pad-oper \
6 --pad-header \
7 --align-pointer=type \
8 --indent-switches \
9 -R *.cpp *.h

See below for explanations about these options or check the astyle documentation

http://astyle.sorveforge.net/
http://astyle.sorceforge.net/astyle.html

18 Generic C++ Conventions

CPG-003: 4 spaces instead of one tab

Summary

Code indentation must use 4 spaces instead of one tab everywhere. You should not use tab
character for indentation. There should be no trailing whitespace and no empty line at end
of �les.

Rationale

As CamiTK uses CMake as project generator, you are free to use your favorite IDE and/or
your favorite code editor to write your code. However, indentations must use 4 spaces
everywhere. There must be no indentation for namespaces. Special characters like TAB
and page break must be avoided. Please refer to the corresponding wiki page to correctly
setup your editor.

Note
This is the default for astyle (same as using the -indent=spaces=4) and will be auto-
matically applied when using astyle.

2.3 Code Presentation and Aesthetics 19

CPG-004: Bracket Style: Java

Summary

The bracket style should be Java: open bracket at the end of the line and closing bracket at
the beginning of the last line

Best Practice

1 int methodName(bool parameterName) {
2 if (isBar) {
3 doSomething();
4 return 1;
5 } else
6 return 0;
7 }

Rationale

You should use java style for bracket positions. You can make your editor format automati-
cally or use the astyle option -style=java to automatically apply this CPGG.

20 Generic C++ Conventions

CPG-005: Space Between Operators

Summary

To ease reading, ther should be space between operators and operands, and parenthesis for
each condition.

Best Practice

1 if ((a == b) || (a == c))

Rationale

Spaces ease the reading of the code. In addition, event though boolean operators have
priority rules, it is a good practice to write unambiguous code for the reader. You can use
the astyle option -pad-oper to automatically apply this CPGG.

2.3 Code Presentation and Aesthetics 21

CPG-006: Breaks closing headers from their immediately preceding closing brackets

Summary
To ease reading, all the closing headers (’else’, ’catch’, etc.) should start on a new line.

Best Practice

1 void Foo(bool isFoo) {
2 if (isFoo) {
3 bar();
4 }
5 else { // Note the else starts on a new line
6 anotherBar();
7 }
8 }

Rationale

Readability: this should be easier to read and not miss the closing header blocks. You can
use the astyle option -break-closing-brackets to automatically apply this CPGG.

22 Generic C++ Conventions

CPG-007: Add brackets to unbracketed one line conditional statements

Summary
To ease reading, all the one line statements (e.g. ’if’, ’for’, ’while’, etc.) should use a bracket.

Best Practice

1 if (isFoo) { // There are brackets even if the statement is only on
2 isFoo = false; // one line
3 }

Rationale

Readability: this should be easier to see that there is one statement following the conditional
statement. You can use the astyle option -ad-brackets to automatically apply this CPGG.

2.3 Code Presentation and Aesthetics 23

CPG-008: Insert Space Padding Between a Header and the Following Paren

Summary

There should be a space between header (i.e., a C++ test statement for example) and the
following parenthesis.

Best Practice

1 if (isFoo((a+2), b)) { // note the space between the "if" and the parenthesis
2 bar(a, b); // note the absence of space between method name and parenthesis
3 }

Rationale

Readability: this makes it easier to see the statement and conditional. You can use the option
-pad-header in astyle to automatically apply this CPGG.

24 Generic C++ Conventions

CPG-009: Attach pointer and reference operator (*, &)

Summary
The pointer or reference operator should be attached directly to the variable type.

Best Practice

1 Component* foo1;
2 Viewer& foo2;

Rationale

Readability: this should be easier to see if all the pointer and reference operators are
attached to the left (i.e. the type). This can also avoid confusion between the reference
operator and the binary operator &. You can use the astyle option -align-pointer=type
to automatically apply this CPGG.

2.3 Code Presentation and Aesthetics 25

CPG-010: Indent Case Statement in Switch Blocks

Summary

Indent switch blocks so that the case X: statement are indented in the switch block. The
entire case block is indented.

Best Practice

1 switch (foo) {
2 case 1:
3 a += 1;
4 break;
5
6 case 2: {
7 a += 2;
8 break;
9 }
10 }

Rationale

Readability: this should be easier to read and distinguish between the switch blocks. You
can use the option -indent-switches in astyle to automatically apply this CPGG.

26 Generic C++ Conventions

2.4 Naming Conventions

Most of the CamiTK naming conventions follow the Java naming convention. The following text
is highly inpired by (https://en.wikipedia.org/wiki/Naming_convention_%28programming%29).

CPG-011: Directory Names

Summary
Directory, package names should be in lower case (with no underscore or space or any type
of separators between words) and use only 26 unaccentuated lowercase characters of the
roman alphabet (no accents, no language speci�c, only the lowercase letters of the ASCII
table).

Rationale

There are many things to consider (portability, ascendant compatibility, multi-OS support,
etc.).

CamiTK directory names follow an old Unix idea, that proved later to be save when using
the same tree on Microsoft Windows. It also follows the more modern Object Oriented
Programming principle, where a directory is used/can be directly used as a namespace: the
directory name is thne used as the namespace’s name.

It is also on the same wavelength as the Java convention "Package names are written in all
lower case to avoid con�ict with the names of classes or interfaces", from the Java documentation
(Oracle).

Therefore, CamiTK conventions do not allow dash (-), uppercase, space or any separator in
the directory names.

https://en.wikipedia.org/wiki/Naming_convention_%28programming%29

2.4 Naming Conventions 27

CPG-012: Class Names

Summary

Class names should be UpperCamelCase, with the �rst letter of every word capitalized. Use
whole words (avoid acronyms and abbreviations unless the abbreviation is much more widely
used than the long form, such as URL or HTML). Use only ASCII characters (no accents).

Best Practice

1 class ImageComponent;
2 class MeshComponent;

Rationale

CamelCase (also called camel caps or medial capitals) is the practice of writing compound
words or phrases such that each word or abbreviation begins with a capital letter. To
know more on CamelCase, see (http://en.wikipedia.org/wiki/CamelCase) As the �lenames
are automatically deduced from the class names, all �le names must contain only ASCII
characters.

Note This de�ers from the VTK naming convention.

http://en.wikipedia.org/wiki/CamelCase

28 Generic C++ Conventions

CPG-013: Method Names

Summary

Methods should be verbs in lowerCamelCase or a multi-world name that begins with a verb
in lowercase ; that is, with the �rst letter lowercase and the �rst letters of any subsequent
words in uppercase.

Best Practice

1 void run();
2 void runFast();
3 Image * getImage();
4 bool isOpened();

Rationale

When reading the name of the function, the reader should understand what the function
does. As in Object Oriented Programming, functions are most of the time actions on objects,
their names sould express verbs. With editors auto-completion, one does not have to restrain
oneself on the length of a method name, so it should be as explicit as possible. Method
returning a boolean, which indicates the state of an instance, can begin by is.

2.4 Naming Conventions 29

CPG-014: Accessor / Mutator

Summary

Class data should be encapsulated, i.e., each attribute (instance variable) should be declared
as private. You should use an accessor and mutator to enforce encapsulatoin and control
the access to the data (unless very very very rare speci�c cases). The accessor should be
named setAttributeName() and mutator should be named getAttributeName() (where
AttributeName is... the name of the attribute).

Best Practice

1 public:
2 void setAttributeName(type newValue);
3 type getAttributeName() const;
4 private:
5 type attributeName;

Rationale

Public attribute are allowed only in exceptional situations (that you probably won’t meet in
CamiTK code, that can be di�erent in a library). For better clarity, an accessor for a boolean
attribute can also be called isSomething() or hasSomething()

Note This di�ers from the Qt naming convention (where the get pre�x is omitted).

30 Generic C++ Conventions

CPG-015: Variables

Summary

Local variables, instance variables and class variables are also written in lowerCamelCase.
Variable names should be meaningful. The choice of a variable name should be mnemonic,
useful and meaningful (that is, designed to indicate to the casual observer the intent of its
use and clearly and quickly self explain what it is there for).

Each variable declaration should start on a new line. Please avoid abbreviations and cantrac-
tion of names (e.g., strPtr should be renamed structurePointer). Do not use short names,
except for counters and temporary variable whose purpose is very obvious. Variable and
method names must always start with a lowercase letter.

Best Practice

1 float width;
2 QString arbitraryLength;

Rationale

Variable names should not start with underscore (_) or dollar sign ($) characters. This
is in contrast to other coding conventions that state that underscores should be used to
pre�x all instance variables. One-character variable name should be avoided except for
temporary throwaway variables. Common names for temporary variables are i, j, k, m and
n for integers, c d and e for characters.

Note

(from (https://msdn.microsoft.com/en-us/library/hh289390.aspx)) "The C++ language
standard reserves the use of identi�ers that begin with an underscore character for
implementations such as libraries. Do not use names beginning with an underscore in
your code."

Note
Calling a variable with metasyntactic words (foo, bar, fobar, toto, titi, tata, tutu,
truc, bidule, stuff, azerty, etc.) or words like tmp, temp, etc. is to be avoided at all
cost !

https://msdn.microsoft.com/en-us/library/hh289390.aspx

2.4 Naming Conventions 31

CPG-016: Constants and Enums

Summary

There should be no constant declared in public class �elds. Public constant values expose
the API. If a modi�cation is required it will be very hard to propagate it to developer codes.
If you really need to de�ne a constant, use a static method (e.g. C::getConstantValue()).
This way if the value itself must be changed, your API won’t disturbed anything. But, again,
do you really need this constant value?

Enumerated values should be written inside an enum C++ structure. All enumerated values
must be in uppercase characters separated by underscores if needed. Constant names may
also contain digits if appropriate, but not as the �rst character. As for all variables, constants
must have meaningful names.

Enums are good. Enum values will be replaced by the compiler at compile time, resulting
in faster code and can be easily commented. Using #define should be prohibited. They are
di�cult to manage regarding to namespace safe (and look ugly) a .

a (https://wiki.qt.io/Coding_Conventions#Aesthetics)

Best Practice

1 // in the C.h header
2 class C {
3 ...
4 public:
5 /** \enum MyEnumType gives an example of how to use enum (and easily document it!).
6 */
7 enum MyEnumType {
8 VALUE_1, ///< this represent the VALUE_1 enum
9 ANOTHER_VALUE, ///< each enumerated value can be documented separately
10 ..., ...
11 LAST_VALUE ///< This is C++: las value does not have any trailing comma
12 };
13
14 ...
15 /// if you really (really) need to declare a constant, use a static method
16 static const int getMyConstant();
17 }
18
19 ...

Rationale

Constant declared in the global scope may cause strange (and di�cult to debug) behaviors
when used in dynamic libraries (e.g. in a CamiTK extension). Again: do not use constant!

https://wiki.qt.io/Coding_Conventions#Aesthetics

32 Generic C++ Conventions

2.5 Header Files Conventions 33

2.5 Header Files Conventions

A particular attention must be paid for header �les as they may be included in other �les and
deeply impact other projects.

CPG-017: A Header File is a Class Declaration

Summary

A header �le should declare only one class and must have the same name that this class.

Rationale

A header �le should be extended by .h. All de�nitions should reside in source �les. The
header �le should only declare an interface (i.e. a class with its attributes and method
signatures).

Note
Header �les may contain more than one class when inner classes or private classes are
used (but it should remain exceptional and follow the PIMPL design pattern).
There may be inline methods in .h header �les.

34 Generic C++ Conventions

CPG-018: Header Guards

Summary

There must be header guards in all header �les. Header guards should not start with an
underscore a .

aSee DCL51-CPP.

Best Practice

1 #ifndef NAMEOFMYFILE_H
2 #define NAMEOFMYFILE_H
3 // Here should be the content of the header file
4 ...
5 #endif // NAMEOFMYFILE_H

Rationale

Multiple inclusions of a header �le can have unexpected and unwanted e�ects. Indeed, if
you include A.h in B.h and in C.h, and also include B.h in C.h, then A.h will be included
twice in C.h. To avoid this, guarding pre-compiler code must be added to each header �le.

https://wiki.sei.cmu.edu/confluence/display/cplusplus/DCL51-CPP.+Do+not+declare+or+define+a+reserved+identifier

2.5 Header Files Conventions 35

CPG-019: Header File Anatomy

Summary

In order to enhance readability, please use the following order for your headers:

• // copyright and licence
• header guards (see ())
• includes (see ())
• class name (see ())
• enum and typedefs
• public methods (constructors �rsts)
• public signals/slots
• protected methods
• protected signals/slots
• private members
• inline method (a minimal number, inline should be well justi�ed)

Best Practice

1 /**
2 * $CAMITK_LICENCE_BEGIN$
3 *
4 * CamiTK - Computer Assisted Medical Intervention ToolKit
5 * (c) 2001-2018 Univ. Grenoble Alpes, CNRS, TIMC-IMAG UMR 5525 (GMCAO)
6 *
7 * Visit http://camitk.imag.fr for more information
8 *
9 * This file is part of CamiTK.
10 *
11 * CamiTK is free software: you can redistribute it and/or modify
12 * it under the terms of the GNU Lesser General Public License version 3
13 * only, as published by the Free Software Foundation.
14 *
15 * CamiTK is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU Lesser General Public License version 3 for more details.
19 *
20 * You should have received a copy of the GNU Lesser General Public
21 * License version 3 along with CamiTK.
22 * If not, see <http://www.gnu.org/licenses/>.
23 *
24 * $CAMITK_LICENCE_END$
25 ***/
26
27 #ifndef CAMITK_COMPONENT_H
28 #define CAMITK_COMPONENT_H
29
30 // -- Core stuff
31 #include "InterfaceNode.h"
32 ...
33 // -- QT stuff
34 #include <QPixmap>
35 ...
36
37 // -- vtk stuff

36 Generic C++ Conventions

38 #include <vtkWindowLevelLookupTable.h>
39 ...
40 // -- vtk stuff Classes
41 class vtkActor;
42 ...
43
44 namespace camitk {
45 // -- Core stuff classes
46 class Geometry;
47 class Slice;
48 class Viewer;
49 class Frame;
50
51 /**
52 *
53 * @ingroup group_sdk_libraries_core_component
54 *
55 * @brief
56 * A Component represents something that
57 * could be included in the explorer view, the interactive 3D viewer,
58 * and that could have or not a contextual
59 * popup menu (open by a right click in the explorer),
60 * a property dialog (to change some properties)
61 * Thus, a Component inherits from many abstract classes.
62 * A Component can only have one implemented representation.
63 *
64 ...
65 */
66 class CAMITK_API Component : public InterfaceProperty, ... {
67 Q_OBJECT
68
69 public:
70 /** \enum Representation The different representation that can be implemented to represent this

Component in the InteractiveViewer.
71 * use getRepresentation() to get the information about a specific Component.
72 * \note the representation cannot be NULL; if a Component
73 * does not have any representation, then getRepresentation() should return NO_REPRESENTATION (

default).
74 */
75 enum Representation {
76 GEOMETRY, ///< this Component can be displayed as a GEOMETRY
77 SLICE, ///< this Component can be displayed as a SLICE
78 NO_REPRESENTATION ///< this Component has no representation implemented
79 };
80
81 /** Component constructor for top-level component (please use the other constructor for sub-level

components).
82 * parentComponent is set to NULL (=> isTopLevel() will return true).
83 * @param file the file to get the data from
84 * @param name the Component name
85 * @param rep the representation concretely implemented by this Component (default=

NO_REPRESENTATION)
86 */
87 Component(const QString & file, const QString & name, Representation rep = NO_REPRESENTATION);
88
89 /** Component constructor for a Component that is a child of another Component
90 * You should not use this constructor for a top-level component.
91 * @param parentComponent the parent Component
92 * @param name the Component name
93 * @param rep the representation implemented by this Component (default=NO_REPRESENTATION)
94 * @throws AbortException if parentComponent is NULL.
95 */
96 Component(Component *parentComponent, const QString & name, Representation rep =

NO_REPRESENTATION) throw(AbortException);
97
98 /** default destructor.
99 * The Component class destructor is automatically called after the inherited destructor has

finished (C++ standard).
100 * This destructor delete all the children, clear all this component’s viewer list, delete all

helper class instance
101 * (Geometry, Slice or Frame), which in turns will delete the VTK pipeline and any additional

2.5 Header Files Conventions 37

prop,
102 * and finally delete and all additional CamiTK Properties.
103 * @see deleteChildren()
104 */
105 virtual ~Component();
106
107 /** return the type of representation concretely implemented by this Component in the

InteractiveViewer.
108 * \note if a Component does not have any representation, then getRepresentation() returns

NO_REPRESENTATION (default).
109 */
110 Representation getRepresentation() const;
111
112 /// return true if this component is a top-level component
113 bool isTopLevel() const;
114
115 /// get the parent component
116 virtual Component * getParentComponent();
117
118 ...
119
120 protected:
121 /// myGeometry is the 3d representation of this Component, the Component delegates all

InterfaceGeometry activity to myGeometry (delegation pattern)
122 InterfaceGeometry * myGeometry;
123
124 /// mySlice is the slice representation of this data component, the Component delegates all

InterfaceBitMap activity to mySlice (delegation pattern)
125 InterfaceBitMap * mySlice;
126
127 ...
128
129 private:
130 /** @name Instance members
131 */
132 /// method called in constructors for general initialization
133 void init();
134
135 /// the service implemented to be represented in the InteractiveViewer
136 Representation myService;
137
138 /// my name
139 QString myName;
140
141 ...
142
143 /** @name Static members
144 * All the static member (manage the application-wide list of Component + the application-wide

current selection + viewers)
145 */
146 ///@{
147 /// set of used viewers
148 static QSet<Viewer*> allViewers;
149 ///@}
150
151 };
152
153
154 // -------------------- isSelected --------------------
155 inline bool Component::isSelected() const {
156 return isSelectedFlag;
157 }
158 ...
159 }
160
161 #endif

38 Generic C++ Conventions

Rationale

Respecting this guideline fasten header �le reading.

2.6 Include Conventions 39

2.6 Include Conventions

CPG-020: Angle-bracket includes convention

Summary

You should use quoted form includes for project local �le includes and angle-bracket includes
for other libraries includes.

Best Practice
To include a �le from another library (or from CamiTK in a CEP), use

1 #include <Application.h>

To include a �le local to your CEP, use
1 #include "MyOwnClass.h"

Rationale

Quoted form include instructs the preprocessor to look for include �les in the same directory
of the �le that contains the #include statement, and then in the directories of any �le that
includes that �le. The preprocessor then searches along the path speci�ed by the /I compiler
options. Angle-bracket form include instructs the preprocessor to search for include �les
�rst along the path speci�ed by the /I compiler option.

Use angle-brackets (e.g. #include <XXX>) to include headers from external libraries (e.g.
Qt, VTK). This is also true about CamiTK API when you are developing outside the CamiTK
core library (i.e. most of the time !). In headers, it is strongly advised to use angle-brackets
and this becomes mandatory if your headers are exported to other projects.

Use double quotes (e.g. #include "XXX") in implementation �les that are in the same
project/directory.

40 Generic C++ Conventions

CPG-021: Include Statement Order

Summary
Include statements in implementation �les should generally appear in logical order from the
most generic / most important class to the less important class (i.e. the class that are used
the most are on top), and grouped by type.

Best Practice

We recommand the following order:

• CamiTK includes
• Qt includes
• VTK includes
• STL includes
• other includes (speci�c API directly related/required by your project)

2.6 Include Conventions 41

CPG-022: Include Path

Summary

Include statements must never use an absolute path. For example, the following statement:

#include <C:/Programms/Dev/CamiTK/include/Application.h>

is wrong while

Best Practice

1 #include <Application.h>

is right

Rationale

Your code might be compiled on other computers, even on other Operating Systems. The
tree organization of header and library �les will probably be completely di�erent on another
computer. Let CMake handles path �nding.

Note
Although it is possible to have relative path for inclusion (#include "../include/My-
OwnFile.h"), it is deprecated as this tree organization should be speci�ed in the CMake-
Lists.txt.

42 Generic C++ Conventions

CPG-023: Minimize the number of includes in header �les

Summary

Do not #include a de�nition when a forward declaration is possible. Use forwared declarations
in header �les judiciously. Only include the header �les that are really necessary (i.e. for
classes of which the structures are used in the header, for super class and dependencies). Try
to include all other headers in the implementation �le.

However, for a class that constitutes an API and will be exported and used by other projects
(e.g. CamiTK API will be exported in CEP), try to avoid forward declaration of entities
de�ned in another API (e.g. Qt)

Best Practice

1 class C; // forward declaration of class C, it just says to the compiler "C is a class"
2
3 class A {
4 C* myOwnC; // for the compiler, a pointer to a class instance is ok
5 }
6 // You may then include C.h in your file A.cpp

Rationale

You should prefer forward declarations whenever possible for the 2 following reasons:

• Cyclic dependency: you cannot include C.h in A.h and include A.h in C.h
• Transitive dependency: more importantly, if you include in your header A.h a header
CFromAnotherLib.h from an external library, then people using your code and includ-
ing your A.h header will also have to include CFromAnotherLib.h and thus add the
other library include path in their project where, if you had use foward declaration,
a link path whould have been su�cient. This is more tricky to con�gure and slows
down the compilation

The logic here is that forward decaration is good if you don’t export your own header �le
to be used outside your project and if its usage will not automatically imply to include the
class you forward declared.

2.6 Include Conventions 43

Note

You may need a full de�nition of a class C in class A in only 3 main cases:
• When you need to know the size of a C object (for example when A has a member

of class C). Note: this might be avoided by using smart pointers
• When you need to name or call a member of class C. Note: this might be avoided
by moving the corresponding code to the implementation �le.

• When your class A inherits from C. Note: in some case, it might be possible to use
the has-a relationship instead of a is-a relationship.

For more details, see item 59 of Sutter and Alexandrescu’s "C++ Coding Standards: 101
Rules, Guidelines and Pest Practices"

44 Generic C++ Conventions

CPG-024: No ’Using namespace’ in header �les

Summary

There should be no

using namespace camitk;

nor

using namespace anything;

in header �les

Best Practice

Within header �les always use namespace::type whatever the namespace.

Rationale

Namespaces deliver the powerful advantage of unambiguous name management. Most of
the time, you will use no namespace or the std or camitk namespace. This is why namespace
using declarations and directives are really useful.

However, if a using namespace statement is present in a header �le C.h, anyone including
C.h will get the corresponding namespace. This defeats the logic and purpose of namespace
and can lead to problems that will be di�cult to tackle.

Written in your header �le, any user who wants to include your �le will have a using
namespace something, declared before is own code (as it will be declared in the include.h).

For more detailed explanation, see item 59 of Sutter and Alexandrescu’s "C++ Coding
Standards: 101 Rules, Guidelines and Pest Practices".

2.6 Include Conventions 45

CPG-025: About windows.h

Summary

As you can guess, the header �le windows.h contains declarations that are speci�c to Mi-
crosoft Windows platform. Thus windows.h must never be included anywhere.

Best Practice

Extract the needed lines from windows.h (and only them) and include them referably in
your .cpp �les.

Find another solution that is not based on windows.h. Most of the time the OS independant
Qt library provides system level features that will ensure an equivalent, if not better, to
the required Microsoft Windows speci�c function/class. For instance, Qt is able to handle
USB port communication, read/write access in the windows registry, manage �les and
directories, network communication, thread, etc. Have a look at the Qt documentation, it
is a well-documented secure and stable framework.

Rationale

When using third party library, we may be tempted to include the �le windows.h (or include
header �les that include windows.h).

Here is why we must resist this temptation:

1. Platform-speci�c �le
First, as windows.h is a �le speci�c to Windows platform and CamiTK is by essence
targeting multi-platform. You should make sure that if including windows.h is truly
what you need, several precautions are taken (e.g., using #if define(_WIN32) blocks).
In addition, you should be aware that a library including the �le windows.h may
not work on other platforms (Linux, Unix, MacOS, etc.) and produce errors in the
continuous integration process. Such a library should only be used if absolutely no
multi-platform equivalent exist. Your CEP will consequently be stuck on the Windows
platform. This defeats one of the main CamiTK objective.

2. Redundant de�nition of Macros (ERROR, min, max, etc.)
The main reason why this particular �le windows.h must not be included into CamiTK
header �les is that it de�nes many redundant macros like for example ERROR which
replaces every occurrence of the word ERROR in all the following �les by a windows
prede�ned code during compilation. As the word ERROR may be used for example in
error messages, this will lead to many compilation errors on Windows. This is an
example, other macros, such as MIN and MAX, may also generate other con�icts.

46 Generic C++ Conventions

2.6 Include Conventions 47

CPG-026: declspec(dllexport) declarations

Summary

Add a _declspec(dllexport) declaration in your extension (wheather it is a Component
or an Action Extension) when you want to allow other Extensions (wheather they are
Component or Action Extensions) to use one of your class.

Best Practice
1- Create a �le MyExtensionNameAPI.h �le whith the following code:

1 #ifndef MYEXTENSIONNAME_API_H
2 #define MYEXTENSIONNAME_API_H
3
4 #if defined(_WIN32) // MSVC and mingw
5 #ifdef COMPILE_MYEXTENSIONNAME_API
6 #define MYEXTENSIONNAME_API __declspec(dllexport)
7 #else
8 #define MYEXTENSIONNAME_API __declspec(dllimport)
9 #endif
10 #else
11 // for all other platforms MYEXTENSIONNAME_API is defined to be "nothing"
12 #ifndef MYEXTENSIONNAME_API
13 #define MYEXTENSIONNAME_API
14 #endif
15 #endif // MSVC and mingw
16
17 #if defined(_WIN32) && !defined(__MINGW32__) // MSVC only
18 #pragma warning(disable : 4290)
19 #endif // MSVC only
20
21 #endif // MYEXTENSIONNAME_API_H

2- Include this MyExtensionNameAPI.h �le in the header �les containing classes you want
to export and declare you class in the following way:
class MYEXTENSIONNAME_API MyClassName ...

3- Add the following line in the camitk_extension macro parameters of the CMakeLists.txt
of your extension:
DEFINES COMPILE_MYEXTENSIONNAME_API

Rationale

On Windows Platform, during link-edition, the linker needs to know which functions
are exported from one dynamic library to another. In CamiTK, all Component or Action
Extensions are dynamic libraries, so they must declare code that will be used by other
Extensions.

CamiTK is multi-platform. So, even if you develop on a Unix-like platform and do not have

48 Generic C++ Conventions

this export declaration problem to handle on your system, you code will very probably be
used by CEPs on a Windows Platform. The proposed code will keep it fully functional on
your platform, but make it usable for everyone.

2.6 Include Conventions 49

CPG-027: Copyright and Licence

Summary

Each header and implementation �les should start with the copyright and licence statement,
even if they di�er from the default LGPLv3 licence.

Best Practice
Here is the default LGPLv3 licence:

1 /**
2 * $CAMITK_LICENCE_BEGIN$
3 *
4 * CamiTK - Computer Assisted Medical Intervention ToolKit
5 * (c) 2001-2018 Univ. Grenoble Alpes, CNRS, TIMC-IMAG UMR 5525 (GMCAO)
6 *
7 * Visit http://camitk.imag.fr for more information
8 *
9 * This file is part of CamiTK.
10 *
11 * CamiTK is free software: you can redistribute it and/or modify
12 * it under the terms of the GNU Lesser General Public License version 3
13 * only, as published by the Free Software Foundation.
14 *
15 * CamiTK is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU Lesser General Public License version 3 for more details.
19 *
20 * You should have received a copy of the GNU Lesser General Public
21 * License version 3 along with CamiTK.
22 * If not, see <http://www.gnu.org/licenses/>.
23 *
24 * $CAMITK_LICENCE_END$
25 ***/

Note that

• The year interval should be up to date
• the CAMIT K_LICENCE_BEGIN and CAMIT K_LICENCE_END lines are manda-

tory and are useful to updte the year for instance using regexp recursive replace.

Here is a copyright and licence example for non-open source code (it might not be the best
one or it might not suit your need):

1 /**
2 * $YOUR_PRIVATE_CEPNAME_LICENCE_BEGIN$
3 *
4 * Copyright (c) 2018-2xxx xxxxxxxxxxxxxxxxxxxxxxxxxx
5 * All rights reserved.
6 *
7 * This software is the confidential and proprietary information
8 * of xxxxxxxxxxxxxxxxxxxxx
9 * You shall not disclose such Confidential Information and shall use
10 * it only in accordance with the terms of the license agreement
11 * you entered into with xxxxxxxxxxxxxxxxx

50 Generic C++ Conventions

12 *
13 * This code can not be copied and/or distributed without the express
14 * permission of the copyright holder.
15 *
16 * $YOUR_PRIVATE_CEPNAME_LICENCE_END$
17 ***/

Rationale

Licence type and copyright notices should appear at the top of each C++ �le or alongside
XML or data �les. If some of your �les are distributed outside the protected environment
of you university or company, people can only know the licence by looking at these lines.
Our advice and recommendation is to use LGPLv3 whenever possible. When in doubt, you
should speak about this with your project/team and see if you have to use a non-open source
copyright and licence notice or not.

Note
The default licence for CamiTK and the code generated by the CamiTK-Wizard is LGPLv3.
It might not be what you want.

2.6 Include Conventions 51

CPG-028: Doxygen Documentation

Summary

All class must be commented for Doxygen.

Best Practice

1 /** Class:
2 * Purpose of this class: a useful comment helping the next developer
3 * to fully understand the intent of the original developer explaining
4 * why and how this class was developped.
5 */
6 class MeaningfulName {
7 public:
8 /// One sentence to explain what this method does, returns
9 /// and what these paramters are
10 void doSomethingMeaningful ();
11 protected:
12 ///one sentence to explain what this field is, does, what is its unit...
13 int keyToEverything;
14 }

Rationale

The purpose of CamiTK Extension project is to be re-used by other users, but also other
developpers. Thus all the class must be commented. CamiTK uses Doxygen to produce API
Documentation, so this format must be adopted by any CamiTK developer.

Note

The @authors and @date �elds are not needed. If the class implements published
research work, please add the reference to the paper in the Doxygen comments as well as
in the description �elds (when available). With the future automatic cataloging this can
be important for the dissemination of knowledge, which is an objective of the CamiTK
project.

52 Generic C++ Conventions

2.7 Cpp files conventions

CPG-029: Core �le extension must use .cpp �le name extension

Summary

The C++ core �les must have a .cpp �le name extension.

Best Practice

1 // Header file:
2 NameOfTheClass.h
3 // Core file:
4 NameOfTheClass.cpp

Rationale

CamiTK uses CMake to generate projects that can be compiled on any platform.

Instead of entering manually cpp �le names in CMakeLists.txt �les, a CamiTK macro
searches for all �les with the �le extension .cpp. If your C++ core �les have the �le
extension .cxx for example, this CMake macro will not �nd and include them automatically
into your project.

2.7 Cpp files conventions 53

CPG-030: Tricky code

Summary

Tricky code should not be commented but rewritten !

Rationale

In general, the use of comments should be minimized by making the code self-documenting
by appropriate name choices and explicit logical structures.

54 Generic C++ Conventions

CPG-031: Magic Numbers

Summary

The use of magic numbers in the code must be avoided.

Best Practice

Number other than 0 and 1 should be considered at best as parameters or at least declared
as apporpiately named constants (see ()).

2.7 Cpp files conventions 55

CPG-032: Comments to indicate a method implementation

Summary

There should be comments like //--- methodName---- in all C++ �les just above each
method implementation

Best Practice

1 //---------- methodName ------------
2 void methodName() {
3
4 }

Rationale

This guideline is for better human readability as it helps clearly separating methods imple-
mentation.

Note
If there is another method implementation with the same name (but di�erent signature),
you should not repeat this comment.

56 Generic C++ Conventions

CPG-033: Use of this->

Summary

The use of this-> to specify instance variables or instance methods should be limited to cases
where there is an ambiguity.

Best Practice

1 int A::A(int a) {
2 this->a = a;
3 }
4
5 void A::changeA(int b) {
6 a = b;
7 }

Rationale

Do not use "this->" inside of methods to access class methods and instance variables unless
needed as a parameter is shadowing the member.

This should make you think about the names you used for the variables. If too many local
variables have the same name as an instance attribute, there might be something wrong:
either too many variables, too badly-named local variables or too many badly-named
members!

The use of your editor color coding should be enough to avoid useless and redundant
auto-reference.

2.8 SDK core files 57

2.8 SDK core files

These conventions are required for all the C++ �les inside the open-source CamiTK SDK library.
They should be applied when possible as a good practice everywhere else.

CPG-034: CamiTK namespace

Summary

Write everything in the camitk namespace only for code and classes inside the CamiTK core
library (classes in the sdk/library/core of the CamiTK opensource project).

Outside this library, use no namespace or your create your own one if you wish (e.g., for a
library).

Rationale

camitk namespace should be restricted to a small number of class that constitutes the basic
framework.

Genric Principles
Licensing
CEP organization
Components
Actions

3 — CamiTK Specific Conventions

“ Always code as if the guy who ends up maintaining your code will be a violent
psychopath who knows where you live.

Rick Osborne ”
3.1 Genric Principles

All the extensions developed in CamiTK must be grouped in CamiTK Extension Projects (CEP
hereafter). Building an extension is easy and is simpli�ed by using the CamiTK-Wizard to
generate the code skeleton and buid it on your development platform. Once an extension is
build and ready, it can be automatically integrated with all the existing extensions, i.e., once
ready you can start using your extension immediately.

CamiTK does not want you to modify any of your own code. Your code is your specialty, and
you are the only one to know what is best to do there. Instead CamiTK asks you to provide a
glue to the service layer: you need to encapsulate your work in a pre-de�ned extension type.
This generally means a minimal or no modi�cation of yoru own code. There is no modi�cation
needed if you already have a well de�ned API where the GUI is completely separated from
the rest. This is generally the case if you have followed well known/recommended software
design. If not, your code can only gain from the new design!

An extension in CamiTK is distributed as a plugin. There are three types of possible plugins in
the CamiTK architecture. The learning curve for CamiTK should therefore be minimal.

To simplify the development and distribution of extensions, CamiTK extensions are grouped
in CEP (CamiTK Extension Projects). A CEP basically groups all the extensions developed by
a speci�c person or group for a speci�c �eld or CAMI project. CEP facilitates task oriented
project and helps you to focus on the most important/valuable code.

60 CamiTK Specific Conventions

Figure 3.1: Principle of the CamiTK plugin interface.

Figure 3.2: CamiTK Service layer 01

There are three types of extensions:

• Component extensions, they provide data I/O features
• Action extensions, they provide data processing features,
• MainWindow extensions, they provide interaction and visualization features, and
• Viewers which come with Action extensions and/or Component extensions ; they provide

a way to design a GUI main window.

There are the four types of glue available in CamiTK. In a project you need to specify a given
number of extensions of each types. Most of the cases are covered by action and component
extensions. The Service Layer provides the de�nition of all these types of extantion and the
SDK provides a lot of default behaviors for the extensions. The default behaviors are usually
the one you need 90
behavior (in Object Oriented Programming, this will lead to rede�nition of an inherited method).

3.1 Genric Principles 61

Figure 3.3: CamiTK Service layer 02

These four extensions correspond to four well-known principles in software achitecture design,
and lead to the separation between, respectively:

• Processing logic
• Data logic
• Application logic
• Presentation and interaction logic

The table below gives you a list of use cases for the four types of extensions.

62 CamiTK Specific Conventions

Type Description/Need Examples Solutions

View a new mesh,
graph scene, image
format, etc. Connect
a new device to view
its data, control its
parameters/actions

• import a .obj format
• view 3D ultraound im-

ages
• connect a medical

robot or sensor
• connect a motion

tracker device to
interact with 3D
viewer

• create a new com-
ponent that inherits
from basic ones
(ImageComponent,
MeshComponent)

• or create a new
generic Component

• or combine exist-
ing components in
a new one (with
sub-Components).

Transform some data.
Generate new informa-
tion from some data.
New way of interacting
with available view.

• Image �lter, volume
reconstruction

• Biomechanical simula-
tion using a speci�c
method

• Mesh/Image registra-
tion

• Fly camera in 3D us-
ing a path of key posi-
tions and timer

1. Choose which com-
ponent is concerned
(what is the input data
of the new algorithm)

2. Create a new action
extension

3. Fill in its parameters
as camitk::Property

You need a speci�c GUI
for your speci�c CAMI
application

• No 2D/3D interaction,
just data explorer and
property viewer

• A speci�c application
to test on a group
of user (including spe-
ci�c log or trace)

1. Choose which soft-
ware component you
need in the main win-
dow and

2. Create a new Main-
Window extension

New type of interaction
with the data. A new
way of visualizing the
data

• Graph of values com-
puted by an action

• Histogram of data
from a component

1. Create a new Viewer
inherited from exist-
ing one (Viewer or In-
teractiveViewer) and
add/re�ne a behavior.

2. Your viewer may be in-
serted into a Compo-
nent Extension.

3.2 Licensing 63

3.2 Licensing

CamiTK-SDK, CamiTK-Imaging and CamiTK-Modeling are under the Free and OpenSource
license LGPLv3.

CPG-101: LGPLv3 license for original open source code

Summary

If you add new original code, data or anything to the open-source project (CamiTK SDK,
imaging or modeling CEP), you must use the LGPLv3 license.

Rationale

The mail default license of the CamiTK open-source project is LGPLv3. We would like to
keep it that way and make as little exception as possible.

64 CamiTK Specific Conventions

CPG-102: License compatibility for imported source code

Summary

If you import some code, data or anything from another project to the open source SDK,
please ensure that its license is compatible with the CamiTK LGPLv3 OpenSource license.
Otherwise it could not be included in the CamiTK Open-Source project.

Rationale

If you include any �les (C++ code, xml, data examples, icons, or any other resources) in
the Open-Source project (e.g, SDK, imaging and modeling CEP), you need to make sure
they are compatible with the Debian Free Software Guideline1 and even more importantly
that, if it is source code (C++, XML or otherwise), it is compatible and can be linked
with code under the LGPLv3 license (see for instance https://www.gnu.org/licenses/gpl-
faq.html#AllCompatibility).

3.3 CEP organization 65

3.3 CEP organization

CPG-103: CEP Directory Tree

Summary

The source code of a CEP should have the following directory tree structure:
1 cepname
2 -> src
3 -> actions
4 -> components
5 -> applications
6 -> viewers
7 -> libraries
8 - COPYRIGHT
9 - CEPContent.xml
10 - FindCamiTK.cmake
11 - README
12 - CMakeLists.txt
13 -> doc
14 -> build

Best Practice

This example shows a CEP called cepname. Everything useful for CEP development is
inside a directory called cepname.

There should be 3 sub-directories at the top level of cepname:

• subdirectory src contains all the CEP source code. You can also name this directory
cepname, which facilitates the use of a VCS.

• subdirectory doc contains all the documentation about this CEP.
• subdirectory build is the build directory needed by CMake ; it contains all generated

�les and can be deleted/regenerated at any time (it must not be stored in a VCS).
Note: it can be anywhere on your computer, not necessarily near the src directory.

The source subdirectory itself contains:

• README is optional, it contains some general information about your CEP (this is not
the same as the description found in CEPDescription.cmake). You can explain some
speci�c things about your CEP in the README (this is good practice). It will be the
�rst thing other CamiTK developers will read before bombarding you with questions
(got the tip?)

• COPYRIGHT contains the copyright information about the source code of the entire
CEP. By default it follows the same COPYRIGHT as CamiTK (LGPLv3), so if you
have a di�erent copyright do not forget to edit this �le for re�ecting yours.

66 CamiTK Specific Conventions

• CEPContent.xml contains an xml description of what is inside your CEP. It is gen-
erally generated by the CamiTK-Wizard and helps making a catalog of existing
extensions

• the top-level CMakeLists.txt and the FindCamiTK.cmake �les are needed to build
the CEP (Theses �les are generated by CamiTK-Wizard. Default version of this �le
should work out-of-the-box, once you have set up CEPDescription.cmake)

• subdirectories actions, components, applications, viewers contain all the exten-
sions provided by the CEP. Depending on your CEP you can have any of those
directories.
subdirectory libraries includes all the speci�c libraries that are needed for this
CEP.

Note
Your CEP may contain only actions and/or components subdirectories, or more, but they
must be organized on the same level. This standardize the data/view/algorithms notions
separation in a CamiTK reliable way.

Note All the directories of the CEP tree organization must follow [CPG-011]

3.4 Components 67

3.4 Components

CPG-104: Component Representation

Summary

A component must have one of the following representation: BitMap, Mesh or None.

Rationale

A Component implements by default 5 interfaces:

• InterfaceNode to be visualized as a tree structure in the Explorer viewer,
• InterfaceProperty to be able to visualize/use its properties in the Property Explorer
• InterfaceFrame, to be localize in the 3D viewer
• InterfaceGeometry OR (exclusive) InterfaceBitMap to be visualize either in a 3D

or a 2D viewer

All Components are viewed by default in the Explorer Viewer (you do not have to change/reim-
plement InterfaceNode, excepti if you really want to), same thing for InterfaceProperty and
InterfaceFrame. For the last one, however, you should precise weather your Component
should implement InterfaceGeometry (i.e. be a Mesh) or InterfaceBitMap (i.e. be an or a
series of 2D image(s)), or none of them (in this case it won’t be seen in default 2D and 3D
viewers.

68 CamiTK Specific Conventions

CPG-105: Component Attributes should be camitk::Property

Summary

camitk::Property is an overlay of Object::Property, itself an overlay of what an Object
Oriented Programming attribute could be. Whenever it is possible, Components attributes
should be managed thanks to camitk::Propertys

Best Practice

Suppose you want to model a patient’s data component with an identi�er and a birth date
year for the patient.

1 // file InterventionData.h:
2 #ifndef INTERVENTIONDATA_H
3 #define INTERVENTIONDATA_H
4
5 #include <QObject>
6
7 #include <Component.h>
8
9 class InterventionData : public camitk::Component {
10
11 Q_OBJECT
12
13 public:
14 /// Default Constructor
15 InterventionData(const QString & file) throw(camitk::AbortException); virtual ~InterventionData

();
16
17 /** Inherited from Component.
18 * InterventionData has no representation, so initRepresentation should not do anything
19 */
20 virtual void initRepresentation() {};
21
22 /** Inherited from Component.
23 * This method encapsulates all the setters for Properties.
24 */
25 virtual void updateProperty(QString name, QVariant value);
26
27 /**
28 * Sets the subject ID.
29 * The subject ID must be the first letter of the first name,
30 * followed by the first letter of the last name,
31 * followed by the number of trial inclusion.
32 * This methods encapsulates the data of subject ID
33 */
34 virtual void setSubjectID(QString value);
35
36 /**
37 * Returns * should be given in the format YYYY.
38 the subject ID (2 capital letters followed by a number
39 */
40 virtual QString getSubjectID();
41
42 /**
43 * The birth year of the subject
44 * should be given in the format YYYY.
45 */
46 virtual void setSubjectBirthYear(int value);

3.4 Components 69

47
48 /**
49 * Returns the birth year of the subject in the format YYYY.
50 * This method encapsulates the data of subject birth date year
51 */
52 virtual int getSubjectBirthYear();
53
54 /**
55 * Return the current age of the patient (in years)
56 */
57 virtual int getSubjectAge();
58
59 };
60 #endif // INTERVENTIONDATA_H
61
62 // File InterventionData.cpp
63 // CamiTK includes
64 #include "InterventionData.h"
65 #include <Property.h>
66
67 // Qt Includes
68 #include <QFileInfo>
69 #include <QDateTime>
70
71 using namespace camitk;
72
73 // The name of the properties come back several time. They should be declared as constants
74 static const char * SUBJECT_ID_PROP_NAME = "Subject’s ID";
75 static const char * SUBJECT_BIRTH_DATE_YEAR = "Subject’s birth year";
76 static const char * SUBJECT_AGE_PROP_NAME = "Subject’s age";
77
78 // All hard coded numbers should be declared as constants (ssee CPGC#015 Constants and enums)
79 static const char * DEFAULT_SUBJECT_ID = "XX0";
80 static const int MIN_BIRTH_YEAR = 1916; // 100 years old in 2016
81 static const int MAX_BIRTH_YEAR = 1998; // 18 years old in 2016
82 static const int DEFAULT_BIRTH_YEAR = 1986; // 30 years old in 2016
83
84
85 // --------------- Constructor -------------------
86 InterventionData::InterventionData(const QString & file) throw(AbortException)
87 : Component(file, QFileInfo(file).baseName())
88 {
89 //-- For this example, we discard the input file and do not read it.
90
91 //-- We declare all the object variables as properties.
92 // Subject’s Name
93 Property * subjectID = new Property(SUBJECT_ID_PROP_NAME, DEFAULT_SUBJECT_ID, "Subject Unique

identifyer. Must be the first letter of the fist name, followed by the first letter of the last
name, followed by the number of the trial inclusion.", "No Unit");

94
95 //-- Let us use a regular expression to check that it follows the rules for subject’s ID
96 // Regular expression that checks that there are 2 letters followed by un number between 0 and

1000
97 QRegExp rx("[A-Z][A-Z][0-9]{1,3}");
98 subjectID->setAttribute("regExp", rx);
99 addProperty(subjectID);
100
101 //-- Subject’s birth date
102 Property * subjectBirthYear = new Property(SUBJECT_BIRTH_DATE_YEAR, QVariant(DEFAULT_BIRTH_YEAR),

"Birth date of the subject in the format YYYY", "Integer");
103 subjectBirthYear->setAttribute("minimum", MIN_BIRTH_YEAR);
104 subjectBirthYear->setAttribute("maximum", MAX_BIRTH_YEAR);
105 addProperty(subjectBirthYear);
106
107 int defaultAge = QDate::currentDate().year() - DEFAULT_BIRTH_YEAR;
108 Property * subjectAge = new Property(SUBJECT_AGE_PROP_NAME, QVariant(defaultAge), "Subject’ Age

at the lauch of the application", "year");
109 //-- This property is automatically calculated and should not be set by external user on the GUI.

110 //!! This property will be read only, only on graphically on the Property Editors (i.e. GUI).
Other class may modify it

70 CamiTK Specific Conventions

111 // from the outside with setProperty. So it is safer to user getters ans setters in this case.
112 subjectAge->setReadOnly(true);
113 addProperty(subjectAge);
114
115 }
116
117 // --------------- Destructor -------------------
118 InterventionData::~InterventionData() {
119
120 }
121
122 // --------------- updateProperties --------------
123 void InterventionData::updateProperty(QString name, QVariant value) {
124 //-- If the birsth date has changed, we should change the age also...
125 if (name == SUBJECT_BIRTH_DATE_YEAR) {
126 int newAge = QDate::currentDate().year() - value.toInt();
127 setProperty(SUBJECT_AGE_PROP_NAME, QVariant(newAge));
128 }
129 else if ((name != SUBJECT_ID_PROP_NAME) && // Do nothing for the property subject’s ID
130 (name != SUBJECT_AGE_PROP_NAME)) { // Do nothing for the subject’s age
131 // if the property is not handled locally, let Component handle it !
132 Component::updateProperty(name, value);
133 }
134
135 //-- Do not forget to refresh your component after having changed its properties.
136 refresh();
137 }
138
139
140 // --------------- setSubjectID -----------------
141 void InterventionData::setSubjectID(QString value) {
142 //-- Check that the format is ok
143 // Regular expression that checks that there are 2 letters followed by un number between 0 and

1000
144 QRegExp rx("[A-Z][A-Z][0-9]{1,3}");
145 if (rx.exactMatch(value)) {
146 setProperty(SUBJECT_ID_PROP_NAME, QVariant(value));
147 }
148 }
149
150
151 // --------------- getSubjectID -----------------
152 QString InterventionData::getSubjectID() {
153 return property(SUBJECT_ID_PROP_NAME).toString();
154 }
155
156
157 //--------------- setSubjectBirthYear--------------
158 void InterventionData::setSubjectBirthYear(int value) {
159 // Check if the value is between min and max values
160 if ((value >= MIN_BIRTH_YEAR) && (value <= MAX_BIRTH_YEAR)) {
161 setProperty(SUBJECT_BIRTH_DATE_YEAR, QVariant(value));
162 }
163 }
164
165 //--------------- setSubjectBirthYear--------------
166 int InterventionData::getSubjectBirthYear() {
167 return property(SUBJECT_BIRTH_DATE_YEAR).toInt();
168 }
169
170 //--------------- setSubjectBirthYear--------------
171 int InterventionData::getSubjectAge() {
172 return property(SUBJECT_AGE_PROP_NAME).toInt();
173 }

Rationale

3.4 Components 71

Contrary to private attributes with public accessors and modi�ers, camitk::Property(ies)
are accessible at runtime without knowing their names at compile time. Which allows for
example the Property Explorer to display and edit them at runtime for any Component.

72 CamiTK Specific Conventions

3.5 Actions

CPG-106: All Action Parameters should be camitk::Property

Summary

The parameters of your Action should not be attributes or GUI speci�c methods, but
camitk::Property.

Rationale

Actions can be called on the graphical interface of CamiTK-Imp. So you may want to redesign
your Action Widget. However, other CamiTK applications, like the CamiTK-StateMachine
for example may pre-set your Action parameters without using a GUI (but a con�guration
�le). These applications should thus be able to access all of your Action’s parameters without
the widget. You may still have a speci�c widget to modify these camitk::Property(ies), but
you should use properties instead of Action’s attributes in the same way as for Components.

Index

4 spaces instead of one tab (CPG-003), 18

A Header File is a Class Declaration (CPG-017),
33

About windows.h (CPG-025), 45
Accessor / Mutator (CPG-014), 29
Add brackets to unbracketed one line condi-

tional statements (CPG-007), 22
All Action Parameters should be camitk::Property

(CPG-106), 72
Angle-bracket includes convention (CPG-020),

39
Attach pointer and reference operator (*, &)

(CPG-009), 24

Bracket Style: Java (CPG-004), 19
Breaks closing headers from their immediately

preceding closing brackets (CPG-006),
21

CamiTK namespace (CPG-034), 57
CEP Directory Tree (CPG-103), 65
Class Names (CPG-012), 27
Comments to indicate a method implementa-

tion (CPG-032), 55
Component Attributes should be camitk::Property

(CPG-105), 68
Component Representation (CPG-104), 67
Constants and Enums (CPG-016), 31
Copyright and Licence (CPG-027), 49
Core �le extension must use .cpp �le name

extension (CPG-029), 52

declspec(dllexport) declarations (CPG-026), 47

Default language is English (CPG-001), 15
Directory Names (CPG-011), 26
Doxygen Documentation (CPG-028), 51

Header File Anatomy (CPG-019), 35
Header Guards (CPG-018), 34

Include Path (CPG-022), 41
Include Statement Order (CPG-021), 40
Indent Case Statement in Switch Blocks (CPG-

010), 25
Insert Space Padding Between a Header and

the Following Paren (CPG-008), 23

LGPLv3 license for original open source code
(CPG-101), 63

License compatibility for imported source code
(CPG-102), 64

Magic Numbers (CPG-031), 54
Method Names (CPG-013), 28
Minimize the number of includes in header

�les (CPG-023), 42

No ’Using namespace’ in header �les (CPG-
024), 44

No absolute �le name (CPG-002), 16

Space Between Operators (CPG-005), 20

Tricky code (CPG-030), 53

Use of this-> (CPG-033), 56

Variables (CPG-015), 30

CamiTK Programming Guidelines
Version 1.0 - 21 June 2018

	Preface
	Introduction
	Prototyping CAMI Applications
	The goal of CamiTK
	Prototyping vs Clinical routine (TRL)

	Prerequisite
	CamiTK General Organization
	Intended Audience
	A Free, Open Source, International and Multi-Platform Framework
	OOP and C++

	Organization of this document

	Generic C++ Conventions
	Introduction
	Code Genericity and Reutilisability
	Code Presentation and Aesthetics
	Naming Conventions
	Header Files Conventions
	Include Conventions
	Cpp files conventions
	SDK core files

	CamiTK Specific Conventions
	Genric Principles
	Licensing
	CEP organization
	Components
	Actions

